
NASA Contractor Report 195470

Alternative Packet Switch Architectures for a
30/20 GHz FDMA/TDMA Geostationary
Communication Satellite Network

Roy Stehle and Richard G. Ogier
SRI International
Menlo Park, California

June 1995

Prepared for
Lewis Research Center
Under Contract NAS3-25934

,4

National Aeronautics and
Space Administration



ALTERNATIVE PACKET SWITCH ARCHITECTURES FOR A 30/20 GHz
FDMA/TDMA GEOSTATIONARY COMMUNICATION SATELLITE NETWORK

Draft Final Report

Roy Stehle and Richard G. Ogier
SRI International

1 Objectives

This study has investigated alternatives for realizing a packet-based network switch for deployment
on a communication satellite. The emphasis was on the avoidance of contention problems that
can occur due to the simultaneous arrival of an excessive number of packets destined for the same
downlink dwell. The study was to look ahead beyond the current Advanced Communications
Technology Satellite (ACTS) capability to the next generation of satellites. The study has not
been limited by currently available technology, but has used university and commercial research
efforts as a basis for designs that can be reliably constructed and launched within the next five
years. Tradeoffs in memory requirement, power requirement, and architecture have been considered
as a part of our study.

2 Design Considerations

The proposed communications system, including both space and ground segments, is similar to that
described by Ivancic and Shalkhauser [4]. To allow for lower cost ground terminals, it has been
proposed that a hybrid modulation scheme be employed. The system will employ the traditional
time division multiplexed (TDM) method of transmitting data to the ground. High power amplifiers
can be used effectively on the satellite, where a high transmission duty cycle exists. To lessen the
cost of the ground station, the system will use frequency division multiple access (FDMA) on the
uplink to the satellite, eliminating the need for a costly TDMA high-power transmitting amplifier
at each ground station.

The satellite will employ eight uplink beams and eight downlink beams to cover CONUS. A
block diagram of the satellite system is shown in Figure 1, which is a copy of Figure 1 from [4]. Each
of the uplink beams will be served by a multi-channel demodulator/demultiplexor (MCDD) which
will provide packet synchronization and decoding for 1024 channels each having a data rate of 64
kbp. Groups of 32 channels may be combined to provide circuit switched service at an aggregate
data rate of 2048 kbps. The combined data rate on each of the eight uplink beams will be 65,536
kbps. Each of the eight downlinks will be served by an encoder and TDM burst modulator operating
at 150 Mbps. Each beam will have a beam steering network that will provide 8 dwell locations;
there will be no overlap in dwell centers for any of the total 64 dwell possibilities.

The network switch that controls the routing of data between the input demodulators and
output modulators is the subject of this report. The design is complicated by the necessity that a
multicast capability must be supported; uplink packets may be addressed to ground stations in as
few as one beam dwell or in as many as all 64 beam dwells (i.e., full broadcast capability). This
capability is supported by the higher data rate of the downlink beams (150 Mbps vs. 65.5 Mbps)
but it can be limited by the aggregate traffic to any one beam, the physical dwell switching time
for a beam, and the percentage of packets requiring multicast. The temporary storage needed to
guarantee packet delivery and avoid contention can be realized in several architectures, which will

1



0 a*

.sc

a^

9

J	 J	 J

Q^

r
2



be discussed in later sections. Also to be covered, are the considerations for the storage capacity
required as a function of the percentage of multicast packets and their final destination distributions.

Two classical architectures have been developed for constructing a packet switch for this appli-
cation: the Shared Bus and the Shared Memory architectures. In the Shared Bus implementation,
each packet appears on a common output bus that is read (i.e., shared) by multiple destinations; in
our case, each destination is a buffer associated with each of the 64 beam dwells. The Shared Mem-
ory configuration shares one large memory buffer among all of the output devices (i.e., downlink
modulators). We will describe each of these implementations, variations thereto, and the advan-
tages and disadvantages of each in the following sections beginning with the conceptually simpler
Shared Bus approach.

3 Shared Bus Implementation

3.1 Design Overview

One possible implementation of a Shared Bus switch is given in Figure 2. In this figure, the
eight uplink beams and their associated multichannel demultiplexer/demodulators are shown on
the left-hand side of the figure. The eight downlink beams with their time division multiplex burst
modulators are indicated on the right-hand side of the figure. A data bus, the shared bus, inter-
connects the eight MCDDs, 64 first-in, first-out (FIFO) memories, and a central control processor.
Each of the FIFO memories is assigned to an individual dwell. In our example, the data bus is
16 bits in width; the width offers a form of space division multiplexing to allow for proportionally
slower speed circuits for handling the interface. The width of 16 bits yields a word duration of 30
ns for our example, which is easily within the current state of the art. A bus width of 16 bits also
matches the projected packet destination address space.

The control processor will generate synchronization signals that will be decoded to provide
output enable signals to each of the MCDDs. Each channel will be given a dedicated time slot in a
frame providing access to all 8192 channels. It should be possible to time synchronize the start of
packets so that their headers will arrive at the satellite at the same time. This can be achieved by
having the ground station derive synchronization from framing flags on the down link data stream
or from a secondary timing source, such as a Global Positioning Satellite (GPS) signal. Since the
satellite is stationary, adjustments to path length differentials, due to geographic deployment, can
be calculated and used to adjust the synchronization.

3.2 Data Bus and Control Processor

The timing on the data bus is fast enough (33 MWords/sec) to allow the data from all 8192 channels
to be transferred in the assembly time for a 16-bit word from an individual channel. Therefore, the
MCDD requires only two words of storage for each channel: one word for the data to be multiplexed
onto the bus and one word for the incoming data assembly. This results in considerable memory
savings compared to storing entire packets (which could be 1000 bits long) at the MCDD. The
order in which the channels are sequenced onto the bus is not restricted, since the timing of the
header from the ground station can be appropriately programmed to prevent buffer overflows. It
is suggested that less timing problems might result if a word from each of the channels associated
with a single beam are read before words are read from the next uplink beam. This would also be

consistent with grouping of data from 32 channels assigned to carry DS-1 circuit switched data.

3



C

O
C-3

V-	 o
E	 EM00CD	 CL	 a^m	 ^	 m

^ CoCo

^ T	 LO	 p

O	 O	 0ai
c	 -------------_. c	 m
f-	 r`	 U

m	 O

	

^	 \	 a
m

	

a	 Na

	

m	 o

	

r	 T

0	 0	 ^	 m
r'	 T	 r	 r

	

w	 W	 w —	 W
LU0 r	 Q O OD	 Q	 O	 v Q	 O v	 Q

iL

LL	 LL	 LL	 LL

LL	 U-	 LL

m 	 Q N 	Q	 o	 Q	 m	
Q

T 	 r

co
v ^

O

N

o ay 7 m
to Y '^
6> O

O J^	 q

^ m
O U ^

c D

O 1Q

tD
T

CO	 m

c O	 Q c 0C O
p w E N	 O c Er t	 r c m
U	 U 0

---.-----------------
a	 co

uiCD	 EECD
go m

3
c

m
m0
r

C
O
ea

C
d
E
Q
E

N7
m

cn
N

m

_Q1

4



If header synchronization is achievable, as discussed in the previous paragraph, then the timing
logic in the control process can be simplified. The first 16 bits of the packet's header is the
destination address. To allow for multicasting, this address is actually structured to be an address
into a routing table. In this manner, as few or as many of the addresses may be devoted to
multicasting; it is not necessary to devote one-half, one-fourth, or other preset fraction of the
address space to multicasting.

A multicast address lookup table is constructed from high-speed read-write memory. Figure 3
provides a pictorial of the processes associated with this table. The table is 64K words in depth; a
word is 64 bits in width. Each word represents a possible address with each bit of the word assigned
to the dwell which will receive the packet. These bits are used to generate latch strobes into the
64 individual FIFO memories assigned to each dwell. This is the implementation of a shared bus.

Through an appropriate control channel, the mapping of header (lookup) address to output
strobe bit pattern can be changed in orbit to dynamically accommodate new multicast requirements,
as the user database changes during the lifetime of the spacecraft.

A second high-speed read-write memory is used to store the header address for each of the
8192 channels. This memory is cycled through sequentially to transfer succeeding words from each
channel to generate the appropriate strobes to the FIFO memories until a packet is transferred.
This simplified clocking scheme requires that all packets be of the same length and that the headers
be synchronized. There is a potential for saving of FIFO memory in the case of idle channels in
the uplink data stream. The header fill address in this case would not generate any strobes, in this
case. Additional schemes are possible allowing variable packet lengths, with an increased processing
requirement to have counters for each channel, rather than a single one for the entire block of 8192
channels.

The approach described requires that the header's destination address and the following words
of each packet form a recognizable pattern to the ground stations, as the packets assembled for
each dwell from multiple uplink channels will be interleaved in the FIFO buffer. Without this
constraint, the address of another packet could be interpreted as control or data information of
the first packet. If such a distinction cannot be established, then full packets would need to be
assembled for each channel in the MCDD before full packets could be transferred on the shared
bus, significantly increasing the memory requirements for the MCDD.

It may be possible to overcome this problem, as explained in the next subsection. In any case,
the shared memory design of Section 4 does not have this problem, since the words of each packet
can be stored noncontiguously in the shared memory, and then reassembled into a full packet just
before transmission. Thus, in the shared memory design, full packets need not be buffered at the
MCDD.

3.3 Packet Division Scheme

In the packet division scheme, packets are divided into a number, say 8, of `minipackets' (which
can be larger than a word) such that only the first minipacket of a packet contains a header. Each
minipacket is bussed to the appropriate downlink FIFO as soon as it arrives (thus the MCDD only
needs to store two minipackets per channel). When the first minipacket of a packet is transmitted
in a downlink slot (corresponding to the appropriate dwell), the corresponding slot in the next 7
frames is reserved for the remaining 7 minipackets of the same packet. The length of the downlink
frame is chosen so that it is no longer than the time required to send one minipacket on the uplink
(so that minipackets are retransmitted on downlink as fast as they are received on the uplink).

5



y

u
0.

O
E
m

a
Y
O
OJ
N
N
d

Q
t+N
U

ch

CD

OFw-^n
^ ^ O

CD

4 ea
C u^

s v,
U ^



This scheme should result in significant memory savings since entire packets would not have to
be stored in the satellite. However, it is not desirable to choose the frame to be very small, because
of the dwell switching time. This can be avoided by making the packets (and thus minipackets)
longer, which requires more memory but also increases the effective data throughput by increasing
the ratio of the packet length to the header length.

Exactly how to implement this scheme is a topic of future study. The idea can be applied to
both the shared bus and shared memory architectures.

3.4 Dwell-assigned FIFO Memories

The FIFO memories provide the temporary storage of packets as the downlink dwell order and
timing is adaptively controlled based on message traffic statistics. The amount of memory required
in each FIFO is dependent on the projected message traffic, including such parameters as percent
multicast packets and destination dwell. The discussion of contention and the influence of memory
size will be discussed in Section 7.

The aggregate data rate of the uplink data determines the speed of the FIFO memory. Eight
beams of 65.5 Mbps data divided into 16-bit words requires the transfer of a word every 30.5
ns. Currently available FIFOs, such as the Cypress Semiconductor CY7C474, of fer this transfer
rate in a 32K word by 9 bit configuration. The input (write) and output (read) operations can
occur asynchronously; each can occur up to the full transfer rate of the chip. Two chips would
be required to store the 16-bit word on the bus, with the extra bits allocatable to parity or other
error checking and correction. At a 150 Mbps downlink data rate, the capacity of one dwell FIFO
storage represents 3.50 ms of traffic.

Referring to Figure 2, it can be seen that the eight dwell FIFOs associated with a downlink beam
share a common output data bus. The data are clocked from the appropriate FIFO memory under
the control of a Dwell Processor. A parallel-to-serial converter follows the FIFO output bus if a bit
serial data stream is required by the TDM downlink modulator. The Dwell Processor adaptively
controls the length and order of dwell selection based on packet traffic stored in the FIFO memories.
The FIFO chips selected for illustration are equipped with three output status pins: Empty/Full,
Programmable Almost Full/Empty, and Half Full. These outputs can be decoded to determine one
of six states of the memory: Empty, Almost Empty, Less than Half Full, Greater than Half Full,
Almost Full, and Full. The "almost" thresholds are programmable, allowing for in-flight adjustment
of dwell logic if traffic statistics change after launch.

The logic states from the eight FIFOs associated with a single beam can be combined into a
lookup table. The output of this table would control dwell time, on the present dwell, and selection
of the next dwell. The dwells could be selected in random order, but a quasi-sequential order is
expected to service circuit switched data channels. If a dwell FIFO might be empty (or nearly so),
it could be passed over in favor of a dwell FIFO that is nearly full.

Simulations of projected traffic can determine if the Dwell Processor may be configured from
something as simple as a 24-bit input combinational logic element. Up-down counters can provide
more quantization levels on the capacity of the FIFOs if more precise knowledge of capacity is
required. The assumption that beam steering will require a significant amount of time (i.e., Z 1
microsecond) relative to a bit time, coupled with resynchronization bits, dictates that the dwell
time be somewhat to significantly larger than the switching time. Adequate time is provided for
comparisons of counter values (i.e., buffer capacity) to decide the next dwell selection without
demanding ultrafast computational capacity. This simplicity of design compensates for the fact
that a Dwell Processor is required for each beam.

7



3.5 Conclusions

The advantage of the Shared Bus architecture just described is in its simplicity of processing.
The routing decisions are handled by lookup tables or combinatorial logic. A disadvantage of this
architecture is the lack of a sharing of memory storage; each dwell needs the maximum computed
capacity. This does not appear to be a serious drawback, as the FIFO memory is a highly integrated
element offering good total power and space tradeoffs when compared to random read-write memory
and a much more complicated control processor. A secondary benefit comes from the saving of
buffer memory for idle channel packets. The moderate word width and minimized interconnection
requirements offer advantages in reliability.

Reliability is important, as each dwell has been assigned a FIFO. A memory failure could disable
one service area on the ground. With additional programming logic on board the satellite, a FIFO
failure could be accommodated in a quasi-static manner by dynamically reconfiguring the lookup
tables to associate a low traffic FIFO to serve the dwell of the failed FIFO. The dynamic switching
would take place on a cycle that was a fraction of the roundtrip delay (e.g., 50 ms). The period
needs to be short enough so that circuit switched data does not appear to be significantly delayed.
Commands on the downlink channel could direct ground stations on the timing of the switchover
so that traffic to the temporarily reassigned dwell might be held back until it is reconfigured. Such
a scheme will degrade traffic flow by more than one-eighth, because of timing margins, but it does
retain data flow to an otherwise lost target area (dwell).

4 Shared Memory Implementation

4.1 Design Overview

A block diagram of a Shared Memory implementation is given in Figure 4. The uplink portion,
on the left-hand side of the figure, is identical to that previously discussed for the Shared Bus
implementation, with the exception of the use of a wider data bus. Aside from double-word syn-
chronization buffers on the uplink and downlink channels, the memory is contained in one large
memory block shared by the uplink and downlink hardware. A sophisticated control processor
manages the memory space for maximum utilization.

Since input and output functions for all uplink channels and downlink dwells share the memory
buffer, it is required to process data at the aggregate of both the uplink and downlink data rates.
To scale the data rates to more easily handled speeds, the data bus is scaled in width. A width of
48 bits has been selected for our discussions; smaller or greater widths are possible. An assumption
of memory cycle times of 20 ns yields a capacity of 2.4 Gbps, offering a comfortable margin for
housekeeping functions over the aggregate of the 0.524 Gbps uplink and 1.200 Gbps downlink.

The Control Processor manages the placement of packets into the shared memory. It determines
the distribution of packets, including multicast packets, and controls the assembly order of dwell
downlink data streams. An address mapping into dwell destinations is accomplished in a lookup
table similar to that used in the Shared Bus implementation. An additional memory contains main
memory address pointers to the packets assigned to each dwell. Address counters and address offset
registers are prominent in the data transfer design to accommodate the high throughput required.
A multiprocessor implementation will quite likely be needed to handle the routing decisions and
dwell frame assembly.

Just as the uplink demodulators and demultiplexors provided two word buffering for synchro-
nization and processing, similar buffering is used for each of the downlink beams and their associated

8



C
O
i+
e0

C

d

E
W
CL
E

O
E
a^

m
ev
L
N

of

m

al
Li-



modulators. The buffers convert from the parallel mode of the data bus to the serial data stream
required by the modulator.

4.2 Circular Buffer Design

In this implementation, the shared memory is configured as a large circular buffer. Incoming data is
written in ascending, consecutive address order; successive words from an individual uplink channel
will be stored 8192 memory addresses apart. When the memory address range allocated for the
circular buffer overflows, the address is "wrapped" back to the start. Only one copy of a. packet is
stored in memory, even in the case of a multicast packet. Figure 5 presents a graphic representation
of a circular buffer.

In the extreme case of no multicast packets, it would only be necessary to provide a few words
of buffering for each channel's packet before passing it on to the downlink; full packet storage would
not be required with properly synchronized uplink and downlink timing. In the case of multicast
packets, the traffic statistics are not easily controllable, because of the large value of the roundtrip
propagation time relative to a packet duration. Because packets destined for the same downlink
dwell may arrive simultaneously on several different channels, it is necessary to provide for the
storage of multiple packets for each channel. It is not required, however, that complete packets be
assembled before transmissions begin on the downlink, unless interleaved packets cannot be handled
by the ground station. Interleaved packets have been assumed for the Shared Bus implementation,
and should be assumed in this case.

With the storage for the first word of each channel's packet, the address field is examined to
determine its destination(s). A reprogrammable look-up address table produces a 64-bit output
word with bits set appropriate to the dwell(s) which will send the packet. The bit pattern can be
used as strobes for special purpose memory or as flags for a special purpose processor that controls
writes into a Dwell Service Memory. The word written into the Dwell Service Memory is the main
memory's address of the first word of the channel's packet, not the word, as was done in the case
of the Shared Bus' FIFO memory. The Dwell Service Memory will be configured in the fashion of
64 FIFOs. Software or hardware up-down counters can also be driven by the pattern of look-up
table output bits to facilitate the logic of dwell management. The 64-bit output from the look-up
table is stored in a memory block with an address range correlated to the circular buffer modulo
the length of a packet. This Packet Distribution Memory will serve as input the housekeeping and
buffer management process.

4.3 Dwell Management Processor

The data flow and memory management functions described thus far are quite straightforward
and can be implemented in high-speed logic or may be handled by a high-speed processor. The
processing for dwell management is a much more complex requirement. It may require that a dwell
management processor be dedicated to each beam, as in the case of the Shared Bus implementation,
due to the complex logic required.

By scanning the Dwell Management Memory or by examination of counters representing the
number of packets destined for each dwell, the individual or composite Dwell Management Processor
will decide the next dwell to be serviced (per beam). Once a dwell has been decided upon, the Dwell
Service Memory is searched to find the main memory starting addresses for the packet destined for
the dwell; this is done by searching for the bit or flag corresponding to that dwell that is set in the
Dwell Distribution Memory. Counters are set with main memory starting addresses for the packets

10



Figure 5 - Circular Buffer Storage

1

Temporary Data Buffers

F— Beginning
of Buffer

(Read)

Direction
of

Fill

End of
Buffer

Buffer
/Available

" V



destined for the selected dwell. Time sharing of the main memory bus allows the packet contents
to be transferred to the buffering registers associated with each beam. Timing must be critically
controlled to maintain the flow of data to each TDMA burst modulator.

Since it is possible for a multi-channel packet transmission for a given dwell to be interrupted
to service a higher priority dwell, the order of the channel packets must not be disturbed until they
have been transmitted in their entirety. Adding a new packet to a process already underway is
likely to cause design difficulties for the ground receiver's demultiplexor.

Once a packet has been transmitted for its destination dwell, the corresponding bit in the Dwell
Distribution Memory is reset to signal this condition. An all zero word in the Dwell Distribution
Memory is an indication to the Memory Management Processor that that area of memory may be
reused. In the ideal case, the "highest" writable address in the circular buffer will always remain a
constant distance from the last address written.

In the case of multicast packets, it is possible that a packet for a low traffic dwell might reside
in memory for a comparatively long time. Without proper memory management, the packet would
be in risk of being overwritten. A housekeeping process (or processor) would sense this impending
condition and take avoidance procedures. One method would be to relocate the packet to the
current end of the circular buffer. This might be done at the epoch when all 8192 uplink channel
packets have been received, or it might occur when all eight downlink beams were being redirected.
It is important that dwell management memory pointers be updated in a consistent fashion to
prevent corruption of a packet.

The packet relocation process has a problem of memory conservation. Since the counters used
for retrieval of the packet for transmission on the downlink(s) depends on addresses that are in-
cremented by 8192 (i.e., the number of channels), a large block of memory would be wasted if this
storage algorithm was retained. The relocated packet could be stored in a contiguous memory block
if an address coding bit was associated with the new packet starting address to indicate address
increments of unity, rather than 8192.

An alternate approach to packet relocation would be to use the space of an idle channel. It
can be expected that not all uplink channels will be occupied continuously. Even in high traffic
periods, such as those likely to create straggling packets, there is a reasonable likelihood that an
unused channel of single packet duration would exist in the recent history of the active portion
of the circular memory. Alternatively, the highest addressed already delivered packet buffer could
serve as a destination for the packet to be relocated.

Straggler packets may also be avoided by assigning a higher priority to the queue for the unde-
livered dwells for that packet to encourage an earlier delivery of that packet. This is algorithmically
more complicated than the storage relocation process and would have to be simulated for optimiza-
tion.

The circular buffer implementation has a distinct advantage that the memory is shared by all
processes. Its relatively tight packing of that memory in a continuous fashion increases the efficiency
of usage. Only one copy of a packet is required for multicasting, offering increased efficiency. A
large block of memory is also fairly efficient of power and space compared to an equivalent amount
of memory distributed amongst a modular hardware implementation. Reliability can be gained by
allowing the Memory Control Processor to redefine circular buffer size to avoid a faulty page of
memory. The disadvantage is that the circular buffer requires a fairly large continuous block of
memory to store an adequate number of packets for distribution.

The disadvantages of this architecture relate to device speed and logic complexity. Even with
a three-fold increase in memory bus data word width (98 bits vs 16 bits) the projected memory

12



cycle time for the shared memory is two-thirds of that projected for the Shared Bus FIFOs (20 ns
vs 30 ns). The efficient use of memory will reduce costs and power, but the processing logic needed
to manage the memory allocation will add significantly on both counts. The additional drivers for
the wider data bus will also increase power and space demands.

4.4 Quasi-Arbitrary Buffer Allocation

An alternate scheme for allocating memory uses an arbitrary assignment of individual packet
buffers. The operation is similar to the circular buffer approach except for the manner in which
packets are stored. Blocks of memory equal to a packet are assigned on a quasi-arbitrary basis.
An auxiliary offset memory stores the starting address for each channel's incoming packet. The
channels continue to be sampled in a sequential manner and word-by-word; the packet data for
each channel is stored in consecutive memory. An adder forms the physical address from the chan-
nel number designator and the pointer stored in the offset memory. The mapping into a Dwell
Distribution Memory is similar to that of the Circular Buffer approach, including the flag bits per
dwell. An example of how packets might be stored with this scheme is given in Figure 6.

The ability to assign incoming packets to arbitrarily distributed buffers has the advantage that
buffer overflow housekeeping is not required. Delinquent packets can remain in place in their initial
storage location. This comes at only a minor cost for a more complex storage address generator
formed from a channel address counter, and offset memory, and a word counter. It has an additional
advantage of being able to isolate arbitrary blocks of memory from usage in case of a fault. Large
blocks of contiguous memory are not required. The disadvantage lies in the need for a potentially
more sophisticated processor to find the buffers which are "empty" and able to accept new packets.
This could use a simple algorithm of taking the next free buffer from the last one used, leading to
the inclusion of the word "quasi" in the description of this approach.

4.5 Dual-Port Video RAM Approach

It would be desirable to use the random write, sequential read feature of a dual-ported video RAM
to improve the data handling and bus timing requirements for the shared memory approach; in a
sense, this approach is a hybrid of the Shared Memory and Shared Bus architectures.

A video RAM offers random access to any word in the memory. Its operation on the random
access port is similar to any other RAM for read and write operations. The video RAM possesses a
second port that can be programmed to sequentially read from blocks of the random access memory.
An internal register and counter provide the function of buffer addressing for output that the other
shared memory devices time multiplexed on the address bus. It is usually intended that the output
will continuously be refreshed with the contents of a block of memory.

The drawback for using this type of memory in this switching application is the comparatively
long time that it takes to reprogram the starting address compared to the read cycle time. Therefore,
it is not possible, with current commercial devices, to reprogram the output to sequentially access
multiple buffers; a complete dwell buffer would need to be assembled for continuous readout.

If an efficient method could be devised for writing dwell buffers from the incoming data, then
the high speed output to each dwell modulator could be easily handled by this sequential access
output port. While this is similar to constructing a software equivalent of the hardware FIFO,
proposed in the Shared Bus implementation, the advantage lies in the sharing of the total memory
based on traffic statistics. It would seem to require a high-speed processor to preload these buffers
and/or it would require banks of memory dedicated per a beam, at least. This then becomes equal

13



I Packet N + 7 1

I Packet N + 2 1

Packet N + 4
Packet N+3

I Packet N + 1 1

Packet N + 6 J

Figure 6 - Quasi -Arbitrary Buffer Storage

14



to or more difficult to implement than the (hardware) FIFO memory. This approach is mentioned
to show some consideration for an architecture that does not seem feasible with current circuit
designs but that might be implemented with new technology.

4.6 Fiber Optic Data Bus

The implementations proposed have used the parallel hardware data bus for illustration. This is
a valid implementation and has been u-.--d in narrow and wide bus schemes in many systems. If
there are technical reasons why a direct connection parallel bus would not be suitable, then it is
possible to achieve the same function using optical means. Some cases that might justify an optical
approach might involve spatially separated MCDDs, a long data bus that requires heavy current
drivers to achieve high cycle times, or a bus that might be susceptible to radiated or conducted
interference.

The aggregate data rate for the uplink is 524 Mbps. Serial to parallel and parallel to serial
converters have been implemented capable of transferring data at this rate. Vitesse Semiconductor
offers the G-TAXI V760 series implementation of the Advanced Micro Devices TAXI chip set.
The GaAs version offers data conversion and transfer at data rates to 1.25 Gbps. The system is
modular and can easily accommodate parallel bus widths to 40 bits. The power tradeoff in the
optical conversion may be readily offset with easier interconnection and reduced interference.

5 Comparisons

Two distinctly different approaches to the implementation of a packet switch have been offered.
The Shared Bus approach favors a system that could be implemented with special function circuits,
such as FIFOS, dwell duration and selection logic, and data routing lookup functions. While these
functions could be implemented using microprocessor elements, such as a CPU and memory, the
main advantage to a custom circuit implementation lies in reliability.

Reliability is expected to be easily achieved in the Shared Bus implementation from the limited
size of the data bus, reduced pin count of the custom circuit elements, and reuse of a limited number
of specialized circuits.

The Shared Memory approach gains some reliability because the memory can be shared and
reconfigured to accommodate some hardware faults. It would not suffer the restrictions of a FIFO
memory dedicated to a specific dwell. The Shared Memory approach offers more efficiency in the
amount of memory needed to handle the worst case traffic; the FIFOs of the Shared Bus system
must all be as large as the worst case traffic might dictate.

The high data rate that must be handled by the packet switch places extreme demands on the
high speed processor that must make storage, routing, and dwell decisions in the case of a Shared
Memory system. What might be saved in power and space due to increased memory efficiency
might easily be offset by the multiprocessor control processor dictated by the demands associated
with the high data rate.

A rough estimate of memory required and power consumption for each implementation is in-
cluded in Table 1. We assume, as is implied by the analysis of Section 7, that the Shared Memory
design requires about half as much memory as the Shared Bus design. The power consumption
for the FIFO memories is taken from the data sheet for the densest part currently available from
Cypress Semiconductor ([1]); other parts may be available that are equally suitable for the func-
tion. The power estimate for the static RAM used by the Shared Memory example is based upon a

15



Shared Bus Shared Memory
Total Memory Capacity 32 Mbits 16 Mbits
Power dissipation

Memory 115W low

Bus Drivers 3W 16W
Memory Management Processors 35W 100W
Misc. Circuits 20W 20W
Total 173«' 146W

Est. size ratio 1 1.4
Est. MTBF ratio 1 0.5

Table 1: Estimated Memory and Power Requirements

figure of 10 mW/Mb/MHz assuming a 50 MHz cycle time; a 1Mb ECL static RAM with Ions cycle
time has been used as a reference ([2]). Although the FIFO memory consumes considerably more
power than does the random-access RAM of the shared memory, the additional circuit elements,
particularly the control processors, balance out the power requirements.

The physical size and system availability estimates given in Table 1 represent engineering es-
timates, together with these for power consumption, should receive further study before decisions
can be made on a design based on these parameters.

6 Accommodations for Circuit Switched Connections

6.1 Design Considerations

The designs presented thus far have been based on the switching of multicast packets. Time
dependent circuit switched data traffic is expected to be carried by the switch. These circuits
represent a data rate of 7 Mbps each and are expected to comprise sets of 32 adjacent uplink
channels, each at the basic data rate of 64 kbps. It is possible to treat these circuits in a packet
fashion, assigning headers with routing addresses for each group of bits amounting to a packets
length. This would add significant overhead to the channel, which is desirable.

Each of the packet switching schemes relied on information in the first word of the packet
header to provide routing information through a lookup table (see Figure 3). With order wire
control information passed through a supervisory channel to the control processor, it is possible to
cause the address fed to the Multicast Lookup Table to be derived from an Order Wire Lookup
Memory for those channels designated to comprise circuit switched data. In this manner, no bits
are lost in the data stream to encode the routing in- formation.

Having determined the routing for the circuit switched data, including the possibility for mul-
ticast broadcast information, it is possible to pass the data to the downlink as if it were packets.
A problem arrives in the time parsability of this data. If handled as packets, the ground stations
would be required to have buffers large enough to store the data for a time equivalent to the max-
imum expected delay. The first bits of circuit switched data would not be released by the ground
station until this time delay had occurred to ensure that there would be no breaks in the data
stream caused by delayed packets.

16



To avoid this additional delay and ground station cost, the circuit switched data needs to be
handled in a special manner. In the Shared Memory implementation, special circuit switched data
buffers and/or assignment memorys could be established to ensure high priority to the buffer's
selection for timely transmission on the appropriate dwell. This might be an application for video
RAM to handle the circuit switched data stream. For the case of the Shared Bus, an additional
set of parallel FIFOs would be used to hold the circuit switched data. Output enables would select
the appropriate FIFO based on a dwell reservation scheme.

6.2 Dwell Structure

For a switch handling only packet data, it is possible to derive an algorithm for sensing dwells in
a manner that serves the largest queues first. The selection of a given dwell can be truly random
based on the traffic statistics. The requirement for the synchronousness of circuit switched data
calls for an approach that ensures uniform service to this data.

To keep time synchronization, each circuit switched channel needs to be served at the average
of the uplink rate. With a two dwell length buffer at the ground station, variations in the time a
dwell is served can be accommodated.

If we assume a fixed length frame for each of the eight downlink beams and if we assume a linear
progression through the eight dwells of a beam, we can describe a method of handling both packet
and circuit switched data. As an example, we might set the duration of a frame to be 10ms; this is
the uplink duration for a 600-bit packet on a 64 kbps channel. The average dwell time, including
beam steering switching time, is 1.25ms.

Before the end of the current frame, a Dwell Management processor examines the queue length
for each of the eight dwells. The number of circuit switched channels is also known. The processor
determined the amount of time occupied by the circuit switched traffic and subtracts this amount
from the total time available for data; this leaves the amount of time available for packet data
traffic. The largest queues will be allocated the largest portion of the available time to prevent
these queues from overflowing. The dwell durations will vary according to the traffic statistics.

Referring to Figure 7, we see a possible structure for a single dwell. After the dwell synchroniza-
tion header, a word, if necessary, indicates the number of circuit switched channels; the data for
these channels follows, satisfying the requirement for a constant flow of this data. A word indicates
the number of packets may be set equal to zero to better allocate time to busy dwells. Figure 8
is an example of this process. Control of the channel setup process can provide for the limiting of
circuit switched traffic if packet data are backing up and threatening the capacity of the on-board
memory.

The figures portray packets and circuit switched data that are contiguous blocks. The structures
for network switched in this report are capable of handling packets on an interleaved basis on the
downlink as well as contiguous units.

17



Time

Ir

Frame Sync

No. of Circuit Switch

First
Circuit Switched

Channel

First
Circuit Switched

Channel

I
I
I
I

Nth
Circuit Switched

Channel
No. of Packets

Packet #1
Packet #1
Packet #1

I
I
I
I

Packet # M-1
Packet #M

Circuit
Switched
Traffic

Packet
Traffic

Figure 7 -- Dwell Frame Structure

18



w
E
Or	 ^

U	 O
O	 Q
Q	 O

cu
O	 X E

W lL
O	 1

Z	 co
Oa
m	 vi
x

19



7 Analysis

In this section, we analyze the relationship between memory size and the probability of packet loss
for several switch designs, including the ones presented earlier. In particular, we determine for each
design the amount of memory required to achieve the desired loss probability of 10° 9 . We also
present a formula for the optimal packet length and dwell length as a function of the packet header
length, the memory size, and the dwell switch time.

7.1 Packet Loss Probability vs. Buffer Size

Our analysis of probability loss makes use of the formulas of Hluchyj and Karol [3]. Although their
paper assumes an NxN switch, their analysis is easily extended to an MxN switch. One important
difference between their model and ours is that they assume each output is served continuously.
In our model, an output corresponds to one of 64 dwells (8 per beam), and at most one dwell per
beam can be served at a time. Thus, packets queued for a particular dwell may have to wait for
the other 7 dwells to be served before being served. The model of [3] would assume that all dwells
are served continuously at 18.75 Mbps rather than 1/8 of the time at 150Mbps.

It is easy to see that having to wait for a particular dwell to be served adds at most D packets
per output to the buffer requirement (while achieving the same loss probability), where D is the
number of packets in a single dwell. Thus, to determine an upper bound for the buffer size required
to achieve a given probability, we can compute the size according to [3], and then add D packets
per output, i.e., 64D packets. In other words, we add enough memory for each downlink beam to
hold a frame (8 dwells) of packets. However, we emphasize that in our shared memory design, all
memory locations are shared among all dwells. This is in contrast to the design of [4], in which
each location of the burst transmit buffer is dedicated to a particular dwell.

We consider three switch designs: output queuing (OQ) (i.e., shared bus), shared buffering
per beam (SBPB), and completely shared buffering (CSB). The shared bus and completely shared
buffering designs were presented earlier. SBPB is similar to CSB except that SBPB uses a separate
shared memory for each downlink beam. In each of the designs there are 8 inputs and 64 outputs.

For the traffic model, we assumed that during each time slot (the time required to transmit one
packet on a downlink beam), each of the 64 outputs receives a packet from each of the 8 inputs
with probability p/64. Thus, each output receives an average of p/8 packets per slot. Since there
are 8 outputs per downlink beam, p is the fraction of downlink slots that are used.

Figure 9 gives the packet loss probability as a function of buffer size (in packets) for the three
switch designs, assuming p = .9 and D = 256 (implying 2048 packets per frame). Table 2 shows
the buffer size required to achieve a packet loss probability of 10 -9 for the three switch designs, for

different values of p and D. The buffer sizes in the figure and table do not include the buffering
required at the MCDD, which would be 2*8*1024 = 16384 if we assume that as many as two
packets must be stored for each uplink channel. However, the designs presented earlier allow a
much smaller buffer at the MCDD by requiring only a fraction of each packet to be stored there.

We define the multicast factor to be the average number of destinations to which each packet
(including non-multicast packets) is addressed. If the uplinks and downlinks were fully utilized,
the multicast factor would be 150/65.5 = 2.3. However, the factor can be higher if the uplinks
are underutilized, and lower if the downlinks are underutilized. The traffic model we used is
independent of the multicast factor, but assumes, for the CSM design, that every copy of each
packet is stored in a separate location. For the case in which the CSM stores only one copy of each

20



\EOUTPUT QUEUING

	

\ SHARED BUFFERING PE	 AM

COMPLETELY SHARED BUFFERI

10
2000	 3000	 4000	 5000	 6000	 7000	 8000

BUFFER SIZE (PACKETS)

1

10 -2

10 -4

10 -6

10 -8

10-io

-12

Figure 9: Packet loss probability vs. buffer size for three switch designs.

Load Frame size OQ SBPB CSB

.9 256 7040 3456 2596

.8 256 4544 2696 2287

.9 2048 21376 17796 16932

.8 2048 18880 17032 16623

Table 2: Storage requirement in packets required to achieve a packet loss probability of 10 -9 for
Output Queuing (OQ), Shared Buffering Per Beam (SBPB), and Completely Shared Buffering
(CSB). This does not include storage at the MCDD.

21



Load SBPB CSB
.9 624 176
.8 312 81

Table 3: Theoretical storage requirement in packets required to achieve a packet loss probability of
10-9 for SBPB and CSB, assuming arbitrarily fast dwell control and negligible dwell switch time.

packet, the storage requirement can be obtained by dividing the appropriate size in Table 2 by the
multicast factor.

Table 2 assumes that all dwells of each downlink beam are of equal length, and that the traffic
load is the same for each dwell. This assumption of uniform demands is actually the worst case. For
example, if all traffic on each downlink beam used the same dwell (at 80% or 90% of the downlink
beam capacity), then, assuming that the dwell lengths can be adapted according to the near real
time traffic demands, the probability of packet loss would be lower than that shown in Table 2.
This is because the full capacity of each downlink beam is continuously dedicated to the single
utilized dwell,

The designs presented earlier allow the possibility of dynamic dwell control, in which the dwell
lengths can be adjusted on a frame-by-frame basis according to the current number of packets
queued for each dwell. Table 3 shows the dramatic savings in memory that this method can
achieve when combined with memory sharing. This analysis assumes arbitrarily fast dwell control
and negligible dwell switch time, and thus represents only a theoretical limit.

Since shared memory is used, the analysis is independent of the protocol used, as long as the
protocol has the property that each downlink beam transmits packets as long as there is a packet
waiting for any dwell of the beam. One possible protocol is as follows. The beam first selects the
dwell for which the most packets are buffered. It then continues to serve that dwell for a preassigned
length of time D, or until all packets for that dwell have been transmitted, whichever comes first.
This step is then repeated. Although this scheme may require the beam to switch very rapidly
from dwell to dwell when few packets are buffered, thus wasting bandwidth during the dwell switch
time, it does not have this problem in the more critical situation in which the number of buffered
packets is large (since the dwell length is D in this case).

CSB with dynamic dwell control is equivalent to shared buffering with 8 outputs, and SBPB
with dynamic dwell control is equivalent to output queuing with 8 outputs (one output per downlink
beam) and with 64 inputs (since as many as 8 packets addressed to the same downlink beam can
arrive in a time slot from each of the 8 uplink beams). Thus, we can use the analysis of [3]. The
OCR design is omitted because it is more difficult to analyze, but we expect it would also achieve a
dramatic savings in memory with dynamic dwell control.

7.2 . Computing the Optimal Packet and Dwell Lengths

It is clear that choosing a small dwell length, and thus a small frame length, results in a significant
reduction in memory requirement. However, because of the dwell switch time, a small dwell length
also reduces the effective data throughput. Similarly, choosing a small packet size reduces the
memory requirement, but because of the packet header, it also reduces the effective data throughput.

In this subsection, we compute the optimal packet length and dwell length as a function of the

packet header length, the memory size, and the dwell switch time. Let D denote the number of

22



packets per dwell. Table 2 gives the required buffer size for the two cases D = 256 and D = 2048.
In general, the buffer requirement can be expressed as B + 64D, where B is independent of the
dwell length. In this subsection, B will also include the size of the buffer at the MCDD (16384
packets).

We let L denote the packet length in bits, H denote the number of bits in the packet header,

S denote the dwell switch time in bits, and M denote the amount of available memory in bits. We
let p denote the fraction of available downlink bandwidth (not including the dwell switch times)
used for packet transmissions.

The effective data throughput, not including the packet header and the dwell switch times, is

thus
_ L—H DL

T — p L DL+S

The total memory requirement in bits is L(B + 64D). Our objective is to choose D and L to
maximize T subject to the constraint L(B + 64D) = M. This constraint implies

_	 Al
L 64D+B

Substituting the equation for L into the equation for T, we obtain

T	
—aD2 + bD

=.9
cD+e

where a = 64H, b = M — BH, c = Al + 64S and e = BS. Setting the derivative of T with respect
to D to zero, we obtain the quadratic equation

acD2 + 2aeD — be = 0,

D 
—ae + a 2 e 2 + abcd

=
ac

which has the solution

Table 4 gives the optimal values for D and L, for M ranging from 1 to 10 Megabytes, assuming
that p = .9, that B is chosen to achieve a packet loss probability of 10 -9 using output queuing,
that H = 65, and that S = 1500 (corresponding to a dwell switch time of 10 microseconds).

The table shows that, if the memory size is at least 24Mbits, then the optimal dwell size is
nearly constant, and the optimal packet length increases nearly linearly with the memory size.

8 Conclusions

We have presented two feasible packet switch designs for the problem considered: the Shared Bus
and the Shared Memory designs. For each, we have presented alternative methods for improving
their performance, and have discussed the tradeoffs between these alternatives. We conclude that
the Shared Memory design requires significantly less memory than the Shared Bus design, but
requires only slightly less power because of its increased processing requirement.

Some of the ideas we have presented are only preliminary, and require future developement
before they can be implemented. One of these ideas is the dynamic control of dwell lengths based

on the instantaneous queue sizes, discussed in Sections 3.4 and 6.2. Another of these ideas is the
packet division scheme presented in Section 3.3.

23



Memory size Dwell length Packet length Data throughput
8Mb 75.469894 305.272736 0.665067

16Mb 81.676025 601.429932 0.778946
24Mb 83.724060 897.721802 0.818500
32Mb 84.744621 1194.045166 0.838576
40NIb 85.355904 1490.380859 0.850717
48NIb 85.762993 1786.722534 0.858851
56Mb 86.053558 2083.067627 0.864681
64Mb 86.271378 2379.415039 0.869064
72Mb 86.440720 2675,763672 0.872479
80Mb 86.576157 29 '12.113281 0.875215

Table 4: Optimal packet length (in bits) and dwell length (in packets) for Output Queuing for
various limits on memory size, assuming that the dwell switch time is 10 microseconds and that
90% of the available downlink capacity (not including dwell switch time) is used.

References

[1] Leilani R. Tamura et al. A 4-ns bicmos trans] ation-lookaside buffer. IEEE Journal of Solid-State
Circuits, pages 1093-1101, October 1990.

[2] Masahide Takada et al. A 5-ns 1-mb ecl bicmos sram. IEEE Journal of Solid-State Circuits,
pages 1057-1062, October 1990.

[3] M.G. Hluchyj and M.J. Karol. Queueing in high-performance packet switching. IEEE Journal
on Selected Areas in Communication, pages 1587-1597, 1988.

[4] W.D. Ivancic and M.J. Shalkhauser. Destination directed packet switch architecture for a 30/20
ghz fdma/tdma geostationary communication satellite network. Technical report, NASA Lewis
Research Center, 1991.

24



Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. 	 Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA	 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 	 20503.

1_ AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1995 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Alternative Packet Switch Architectures for a 30/20 GHz FDMA/TDMA
Geostationary Communication Satellite Network

WU-506-72-21
C-NAS3-259346. AUTHOR(S)

Roy Stehle and Richard G. Ogier

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

SRI International
333 Ravenswood Avenue E-9656
Menlo Park, California 94025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center NASA CR-195470
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES

Project manager, Heechul Kim, Space Electronics Division, NASA Lewis Research Center, organization code 5600,
(216) 433-8698.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -Unlimited
Subject Category 17

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390.

13- ABSTRACT (Maximum 200 words)

This study has investigated alternatives for realizing a packet-based network switch for deployment on a communication
satellite. The emphasis was on the avoidance of contention problems that can occur due to the simultaneous arrival of an
excessive number of packets destined for the same downlink dwell. The study was to look ahead beyond the current
Advanced Communications Technology Satellite (ACTS) capability to the next generation of satellites. The study has not
been limited by currently available technology, but has used university and commercial research efforts as a basis for
designs that can be reliably constructed and launched within the next five years. Tradeoffs in memory requirement, power
requirement, and architecture have been considered as a part of our study.

14- SUBJECT TERMS 15. NUMBER OF PAGES

Information switching processor; Contention analysis 26
16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500	 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


